Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.11.242834

ABSTRACT

AT-527, an orally administered double prodrug of a guanosine nucleotide analog, has been shown previously to be highly efficacious and well tolerated in HCV-infected subjects. Herein we report the potent in vitro activity of AT-511, the free base form of AT-527, against several coronaviruses, including SARS-CoV-2, the causative agent of COVID-19. In normal human airway epithelial (HAE) cell preparations, the average concentration of AT-511 required to inhibit replication of SARS-CoV-2 by 90% (EC90) was 0.5 {micro}M, very similar to the EC90 for AT-511 against HCoV-229E, HCoV-OC43 and SARS-CoV in Huh-7 cells. No cytotoxicity was observed for AT-511 in any of the antiviral assays up to the highest concentration tested (100 {micro}M). Surprisingly, AT-511 was 30-fold less active against MERS-CoV. This differential activity may provide a clue to the apparent unique mechanism of action of the guanosine triphosphate analog formed from AT-527.


Subject(s)
COVID-19 , Hepatitis C , Severe Acute Respiratory Syndrome , Drug-Related Side Effects and Adverse Reactions
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.12.199505

ABSTRACT

PT150 is a clinical stage molecule, taken orally, with a strong safety profile having completed Phase 1 and Phase 2 clinical trials for its original use as an anti-depressant. It has an active IND for COVID-19. Antiviral activities have been found for PT150 and other members of its class in a variety of virus families; thus, it was now tested against SARS-CoV-2 in human bronchial epithelial lining cells and showed effective 90% inhibitory antiviral concentration (EC90) of 5.55 M. PT150 is a member of an extended platform of novel glucocorticoid receptor (GR) and androgen receptor (AR) binding molecules. In vivo, their predominant net effect is one of systemic glucocorticoid antagonism, but they also show direct downregulation of AR and minor GR agonism at the cellular level. We hypothesize that anti-SARS-CoV-2 activity depends in part on this AR downregulation through diminished TMPRSS2 expression and modulation of ACE2 activity. Given that hypercortisolemia is now suggested to be a significant co-factor for COVID-19 progression, we also postulate an additive role for its potent immunomodulatory effects through systemic antagonism of cortisol.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL